
Zen and the art of Hypermedia design
A mostly practical introduction to REST hypermedia design

Ori Pekelman

January 30th 2013 TakeO�Conf Lille



Contents

Introduction 5
foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 State of Hypermedia 7
We are in early 2014 where are we at on adoption? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Design for clarity 11
Clarity comes from within . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
This is what in Restspeak we call A�ordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 What makes a good API? 13
Tracking back a little . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Abstract, Standard, General, Simple, Self-describing, Predictable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Hypermedia is a�ordable REST 15
3



CONTENTS CONTENTS

5 How do REST / Hypermedia urls look like? 17
REST urls look like just normal urls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
So, again, what is hypermedia? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Reading I can understand, but how do I write ? 19
. . . and how the frigging hell do I do transactions with the REST hypermedia thing ?! . . . . . . . . . . . . . . . . . . . . . 19

7 Curious curies 21
Hypermedia needs not be verbose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Fishy Cod & Fishy Cod on steroids 23
Code is data, it is a document you can send. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
HTML is a good hypermedia format (duh!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Some tools: 25

10Contact 27

4



Introduction

So.. I am Ori Pekelman, and for the past year I have been running
a consulting company called Constellation Matrix; you can find
me on twitter/github/linked-in and such as OriPekelman. I have
building web stu� and therfore APIs for the past twenty years
or so. Over this last year I did mostly Data (biggish) and API
oriented projects and I come before you to share some of the
insights I gained.
And I am going to try to sell you on doing Hypermedia.

foreword

REST1 is in, and by itself a software design pattern.
Design patterns are common solutions to recurring problems in
software engineering.
When we talk about REST, we generally talk about the use of
accepted Web standards.2. As REST, as an architectural style is
born from the post-hoc analysis of the e�ciencies of the HTTP
model.
Its implementation, its specific implementation is very much de-
pendent on the enviroment in which it is needed. Very much like
singleton or strategy chain which may or may not make any sens
depending on the programming language you are using.

1Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine, 2000.

2Design Patterns: Elements of Reusable Object-Oriented Software by ErichGamma, RichardHelm, RalphJohnson, and
JohnVlissides (the GangOfFour), AddisonWesley Professional (November 10, 1994)

5

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




FOREWORD CONTENTS

My favorite citation on design patterns is:

“Design patterns are bug reports against your programming
language” 3

– Peter Norvig

What will be proposed here are therfore bug reports againts faulty
implementations of REST, or at least recommendations of com-
mon solutions to common issues.
A design pattern has a scope, and REST is an architecture, or
system level design pattern that specifically treats the issue of
orchestrating or interfacing two or more heterogenous software
systems.
As many design patterns it has applications and implications be-
yond its immediate scope. Hypermedia REST promotes leverag-
ing the existing infrastructure of the Web in order to make two
di�ernet pieces of software talk to each other.

3http://norvig.com/design-patterns/Design Patterns in Dynamic Languages First put online 17 March 1998; first presented
5 May 1996

6

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


http://norvig.com/design-patterns/


Chapter 1

State of Hypermedia

We are in early 2014 where are we at on adoption?

I haven’t even told you yet was this was all about, but I promised
I will be down to earth on this talk so let me first try to convince
you this is not some fringe thing.

Well,

7

Ori Pekelman




WE ARE IN EARLY 2014 WHERE ARE WE AT ON ADOPTION? CHAPTER 1. STATE OF HYPERMEDIA

Github, you know the nice, lovely, competent, Github
right? They have some very nifty hypermedia API
action going around. http://developer.github.com/v3/

8

Ori Pekelman


Ori Pekelman


Ori Pekelman




CHAPTER 1. STATE OF HYPERMEDIA WE ARE IN EARLY 2014 WHERE ARE WE AT ON ADOPTION?

And. . . evil PayPal is in the game too. . . As are Amazon, for appstream for example (and probably all new
APIs they are going to push).
Closer to here (and we will look closer at these ones)

• The Credit Agricole has a hypermedia API to let App devel-
opers access personal banking data!

• Canal TP o�ers a Multi-modal transportation hypermedia API
• VideoMuseum lets you discover modern and contemporary art

through their own. . .
• If you can’t see a pattern emerging you are right. There isn’t

a specific sweetspot for this.
• The only common point is : these are APIs born last year.

And A year ago I would have been hard pressed to find a single
example in production, now I can think of dozens o� the top of
my head.
Not everyone was converted but slowly, hypermedia has become
mainstream; I posit it is soon to become the standard.

9

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




Chapter 2

Design for clarity

Clarity comes from within

Rinzai Zen is marked by the emphasis it places on kensho
(“seeing one’s true nature”) as the gateway to authentic Bud-
dhist practice, and for its insistence on many years of exhaus-
tive post-kensho training to embody the free functioning of
wisdom within the activities of daily life. 1

Lets not forget the master word here: “design”. And design is
about intent.
The API is our users� path to us

We must be our APIs first users

Therfore the API is a path to self knowledge

1[ˆhttp://en.wikipedia.org/wiki/Rinzai_school](ˆhttp://en.wikipedia.org/wiki/Rinzai_school) Rinzai School, Wikipedia

From master Fielding:

A REST API must not define fixed resource names or hier-
archies (an obvious coupling of client and server). Servers
must have the freedom to control their own namespace. In-
stead, allow servers to instruct clients on how to construct
appropriate URIs, such as is done in HTML forms and URI
templates, by defining those instructions within media types
and link relations. [Failure here implies that clients are as-
suming a resource structure due to out-of band informa-
tion, such as a domain-specific standard, which is the data-
oriented equivalent to RPC’s functional coupling]. 2

A REST API should be entered with no prior knowledge
beyond the initial URI (bookmark) and set of standard-

2http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven REST APIs must be hypertext-driven, Roy T.
Fielding, 20 Oct 2008

11

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven


THIS IS WHAT IN RESTSPEAK WE CALL AFFORDANCE CHAPTER 2. DESIGN FOR CLARITY

Figure 2.1: Bodhidharma, by Yoshitoshi, 1887

ized media types that are appropriate for the intended au-
dience (i.e., expected to be understood by any client that
might use the API). From that point on, all application
state transitions must be driven by client selection of server-
provided choices that are present in the received representa-
tions or implied by the user’s manipulation of those repre-
sentations. The transitions may be determined (or limited
by) the client’s knowledge of media types and resource com-
munication mechanisms, both of which may be improved
on-the-fly (e.g., code-on-demand). [Failure here implies that
out-of-band information is driving interaction instead of hy-
pertext.]

3

So these are qualities we ask of any REST API. Hypermedia is
a design pattern on top of this one that makes achieving these
qualities easier. . . and more predictable.

This is what in Restspeak we call A�ordance

3http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven REST APIs must be hypertext-driven, Roy T.
Fielding, 20 Oct 2008

12

Ori Pekelman


Ori Pekelman


http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven


Chapter 3

What makes a good API?

Tracking back a little

1. It is abstract: requires minimal knowledge about the imple-
mentation of the program exposed

2. It is standard: imposes the absolute minimum client side de-
pendencies

3. It is general: it makes minimal assumptions on the way it is
going to be used

4. It is simple: it allows to implement very quickly the most com-
mon use-cases (sometimes orthogonal to generality)

5. It is self-describing: it requires only minimal documentation
6. It is predictable: it does not surprise the user and it adheres

to common patterns and conventions

It is about Ubiquity. Simplicity. Reuse. A�ordance. Scale, and economy of
scale.

In previous talks about hypermedia APIs I insisted on the fact
that the API is a product1; not a by-product of your system. It
should never leak internals. It must be designed.

1http://www.pekelman.com/presentations/apidays/ Lipstick on a pig: How (not) to design a modern API over legacy
systems

13

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


http://www.pekelman.com/presentations/apidays/


ABSTRACT, STANDARD, GENERAL, SIMPLE, SELF-DESCRIBING, PREDICTABLE CHAPTER 3. WHAT MAKES A GOOD API?

Abstract, Standard, General, Simple, Self-describing, Predictable

These are our design goals.

3:30:3 My personal Litmus test

On the homepage of your API A developer should:

1. Understand in 3 seconds what your API is for.
2. Be able to indentify the entry point in 30 seconds.
3. Be able to create an account, call the system, and use the result

in under 3 minutes.

14

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




Chapter 4

Hypermedia is a�ordable REST

The simplest low down

• Basically this means Hypermedia is self describing RESTful
APIs.

• On the “read side” it allows you to discover one resource by
the other

• On the “write side” it allows the client to manage state transi-
tions and the server to describe the next steps to the client

• The API itself being described is a resource. Even
an important one

• Software deals with entities that have data
• In RESTspeak we call these entities “resources”
• An API will exposes methods to read and write data
• Writing data can be expressed as a state transition

So. . . Whats is a resource?

• Something that can be uniquely addressed.
• Something that can be addressed, can be addressed by a url.

15

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




CHAPTER 4. HYPERMEDIA IS AFFORDABLE REST

Figure 4.1: Basically this is about URLs and relations between URLSs

16



Chapter 5

How do REST / Hypermedia urls look like?

REST urls look like just normal urls

http://www.w3.org is a good one. Also
http://pekelman.com/time or http://pekelman.com/time.json
or https://github.com/OriPekelman/paris-rb-grape-
talk/commits/master
I will get back to this ### But they usually look like:

• http://api.example.com/{resource-type}/{resource-
id}.{output-format}?{filters .. and .. api_key .. as ..
arguments} or

• http://api.example.com/{collection} / {item} / {collection} /
{item} / {sub_resource} or something like

• http://api.example.com/ {ver} / {lang} / {resource-type} /
{resource-id}.{output-format}

This last one is probably a bad example it is not DRY at all. . .
we repeat twice the content-type (headers + extension).

So, again, what is hypermedia?

We have seen that “REST urls are just urls” well a hypermedia
API is just a REST API with links.
And even more down to earth.. a REST api with elements that
have a “href” can be considered hypermedia. Not a perfect one.

17

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




SO, AGAIN, WHAT IS HYPERMEDIA? CHAPTER 5. HOW DO REST / HYPERMEDIA URLS LOOK LIKE?

There is more to it. But just linking your resources together gives
already tremendous value to those using it; It works because the
Web works.
If you don’t know what to chose chose HAL
http://stateless.co/hal_specification.html
Otherwise look at http://jsonapi.org/
Links make stu� discoverable, crawlable, automatable, compos-
able, interoperable!
It makes your services possibly a part of a larger whole!
We could hardly make a Google without links right? and “rel”
oh beautiful “rel” it could really bring us closer to the semantic
singularity. . .

18

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




Chapter 6

Reading I can understand, but how do I write ?

. . . and how the frigging hell do I do transactions with the REST
hypermedia thing ?!

I’d be lying if I said this is the easiest part of designing a good
RESTful API. Because while applying CRUDy/Collection/Itemy
patterns is a breeze (just do whatever Y. Katz and S. Klabnick
tell you to see http://jsonapi.org1), doing slow transactions that
depend on remote systems, that may have many, many states can
be di�cult.
Because this really requires you to think about the domain, the
“big state machine” and what are the “real resources” you are
manipulating.
Let’s look at an example from the posterboys out at Stripe:
POST https://. . . /v1/transfers/{id}/cancel

1http://jsonapi.org/

This is bad. Really bad. You have a transfer. You wish it to
be cancelled. But here we are breaking the whole model. What
happens if both the customer and the mechant can cancel the
transfer? and both submit the POST around the same time?
So much possibly breakage. We will need to write 10 pages of
documentation to explain what this verb does, “cancel”.
Better:

1. Just have a “status” element in the document. Yup the same
transfer resource. And POST it back. Now we are very clearly
asking the server to change the state of the resource from “ac-
tive” to “cancelled”. We can very simply use the “IF-NOT-
MODIFIED” semantics. If we don’t get a response from the
server (remember stu� breaks) getting the same resource is
all we need to do. This is what REST is about.

2. You can also create a “cancellation” resource. So PUT
https://. . . /v1/transfers/{id}/cancellation this is
also beautiful, because we understand we can have mul-

19

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




. . . AND HOW THE FRIGGING HELL DO I DO TRANSACTIONS WITH THE REST HYPERMEDIA THING ?!CHAPTER 6. READING I CAN UNDERSTAND, BUT HOW DO I WRITE ?

tiple cancellation requests from multiple parties at the
same time. Hey we can even decide here we need
a quorum. And its easy! something in the lines
of PUT https://. . . /v1/transfers/{id}/ cancella-
tion_requests

Please remember. We are acting on a single resource, but there
are no requirements the resource we are modifiying will not in
its turn modify other resources. So we can create a cancellation
request. It will have its own state machine, which will depend on
the state of the parent resource (the transfer).
By the way, Stripe already have the status element. So this just
comes from the “let’s not be ideaological about REST depart-
ment”. Which I totally adhere to. Except here its totally wrong.
This is not easier to implement, or understand.
Please remember, a resource is something that can be adressed.
Clearly a “cancellation” or a “cancellation request” is a thing. We
want to have a specific log of these.
This works much much better in a distributed, asynchronous
world. We still get n-phase transactions. We can poll for the
result, we can ue PRG (+Long Polling), we can use a webhook.
Basically if you are implementing REST on everything BUT
transactions I believe you are missing out on the real fun (or
e�ciency) of the whole idea.
A note on “DELETE”. I have a big, big problem with the concept
of DELETE. Well because DELETE has no semantics. There is

a thing. I don’t want the thing to be. Why is it not a thing?

1. the thing is not a real thing (Wrong address: Invalidate)
2. it was another thing (Duplicate address: Merge)
3. the thing is no longer a thing (Old address: Archive)

In 99% of cases you do not want to use DELETE because it will
simply mean you are going to reuse the semantics of DELETE for
something else. Basically you should probably “PUT” or “POST”
depending on the semantics the intention you have. Say why this
resource should respond with 404.

20

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




Chapter 7

Curious curies

Hypermedia needs not be verbose.

FACT: Hyperlinks work very well with relative paths.
I would say they even work better.
You know, we asked you to put in “self” relation right? Now go
ahead and use it. This can be your “Closure”, your scope (it has
some other nifty uses), your “base_url”.
Often having verbose URLs in the responses is really not a prob-
lem. But if it is in your very specific case. . . Here you go Hyper-
media can be terse. Call it “ID” style. Call it curies.
There are frameworks for using those (HAL from Mike Kelly,
JSON-API from Steve Klabnik and Yehouda Katz). Choose ei-
ther, or if you really feel a need for NIH roll out your own (please
don’t).
If you are doing more then collection/item you can use something

like:
"curies": [{ "name": "ea", "href": "http://example.com/docs/rels/{rel}",

"templated": true }], with real true to god templates.
Note that some of the propositions are extremly feature rich
(SOAP style rich) they can tell you how to compose the forms,
how to write, how to manage the state machine.
Now there is a debate going on, maybe a bit of bikeshedding
(“_links" againts “link”), and you might be afraid of choosing the
wrong one. Well if you listened to me on the earlier points, and
you proxied your internals and are using a serializer class this
should not be a huge deal (you’ll also see we can get clients to
break less, later).
In Hypermedia REST we decided to forgo the mountain of meta-
data SOAP gave us. Because the SOAP thing anyway didn’t
work. We get less magic with less breakage. But we do add some
back through hypermedia links. We annotate and guide.
But really for the moment this is not about clients that automag-

21

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




HYPERMEDIA NEEDS NOT BE VERBOSE. CHAPTER 7. CURIOUS CURIES

ically bind to your API. This is soapy. We accept people write
code. Its ok. Let’s just make their lives as easy as possible. Let’s
make the coupling light. I imagine you are going to be delivering
client libraries. So this is really ok.
I allow you to use URL fragments. Really, I do. Go
ahead. If they yell at you, tell them I said it was ok.
Please use “HTML” style semantics for URL fragments. A local
reference to an ID. You are allowed to use other semantics (look
at what RDF people are doing with SKOS). But keep it simple
please.
This is a yet to be resolved issue; How do I reference other stu�
in the same response. We are using JSON and JSON is really
light on this. There are some emergeant stu� but the dust has
not settled.

22

Ori Pekelman




Chapter 8

Fishy Cod & Fishy Cod on steroids

Code is data, it is a document you can send.

3.4.3 Client-Stateless-Server (CSS)
The client-stateless-server style derives from client-server
with the additional constraint that no session state is al-
lowed on the server component. Each request from client
to server must contain all of the information necessary to
understand the request, and cannot take advantage of any
stored context on the server. Session state is kept entirely
on the client.1

Well one of the most often misunderstood notions of HATEOAS
is that a stateless server means maintaining a lot of state on the
client. Which the client would usually not really know how to do
without resorting to a lot of code. Because the “domain model”

1Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine, 2000.

of the server is not exposed to the client. Which kind of breaks
the whole promise. It means we are creaing very strong coupling.
There is a magicky solution to this;

5.1.7 Code-On-Demand

The final addition to our constraint set for REST comes
from the code-on-demand style of Section 3.5.3 (Figure 5-8).
REST allows client functionality to be extended by down-
loading and executing code in the form of applets or scripts.
This simplifies clients by reducing the number of features
required to be pre-implemented. Allowing features to be
downloaded after deployment improves system extensibility.
However, it also reduces visibility, and thus is only an op-
tional constraint within REST.

The notion of an optional constraint may seem like an oxy-
moron. However, it does have a purpose in the architec-
tural design of a system that encompasses multiple organi-

23

Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman




HTML IS A GOOD HYPERMEDIA FORMAT (DUH!) CHAPTER 8. FISHY COD & FISHY COD ON STEROIDS

zational boundaries. It means that the architecture only
gains the benefit (and su�ers the disadvantages) of the op-
tional constraints when they are known to be in e�ect for
some realm of the overall system. For example, if all of the
client software within an organization is known to support
Java applets [45], then services within that organization can
be constructed such that they gain the benefit of enhanced
functionality via downloadable Java classes. At the same
time, however, the organization’s firewall may prevent the
transfer of Java applets from external sources, and thus to
the rest of the Web it will appear as if those clients do not
support code-on-demand. An optional constraint allows us
to design an architecture that supports the desired behavior
in the general case, but with the understanding that it may
be disabled within some contexts.2

HTML is a good hypermedia format (duh!)

and a good serialization for Humans

Throw in a bit of Javascript COD and you got yourself a console maybe even your whole
admin backend.

Even better your web site / web app can simply be the HTML
serialization of your api + some nice ember/angular bindings that

2Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine, 2000.

calls itself getting the data with a second serialization.
so http://api.example.com is basically http:/www.example.com
(why the hell do we need to have something else?) One responds
to Content-Type text/html well.. Just a bit of content negotiation
and the website/application/api are the same!
If you go Hypermedia all the way your website is your api is your
mobile app!

24

Ori Pekelman


Ori Pekelman


Ori Pekelman




Chapter 9

Some tools:

Hot of the press In App Cloud by Nicolas Mérouze (he is around find him talk
to him.)

https://github.com/inappcloud/inappcloud

You might need this one to be able to play with APIs that have custom auth schemes .. in
the browser

• https://addons.mozilla.org/en-us/firefox/addon/modify-
headers/developers

A great Chrome API console

• http://restconsole.com/

And a bunch of automagic clients.

• https://github.com/codegram/hyperclient

• https://github.com/xcambar/halbert
• http://weluse.github.io/hyperagent
• https://github.com/jmarquis/angular-hateoas

25



Chapter 10

Contact

Hello my name is Ori Pekelman. I am OriPekelman everywhere
(twitter/github/linked-in).
My blog is on http://blog.constellationmatrix.com

27

Ori Pekelman




CHAPTER 10. CONTACT

Figure 10.1: constellationmatrix

28


	Introduction
	foreword

	State of Hypermedia
	We are in early 2014 where are we at on adoption?

	Design for clarity
	Clarity comes from within
	This is what in Restspeak we call Affordance

	What makes a good API?
	Tracking back a little
	Abstract, Standard, General, Simple, Self-describing, Predictable

	Hypermedia is affordable REST
	How do REST / Hypermedia urls look like?
	REST urls look like just normal urls
	So, again, what is hypermedia?

	Reading I can understand, but how do I write ?
	… and how the frigging hell do I do transactions with the REST hypermedia thing ?!

	Curious curies
	Hypermedia needs not be verbose.

	Fishy Cod & Fishy Cod on steroids
	Code is data, it is a document you can send.
	HTML is a good hypermedia format (duh!)

	Some tools:
	Contact

