The Double whammy, Leaky and the Fishy Cod

Ori Pekelman

December 5th 2013 ApiDays






Contents

Introduction

1 The double whammy
2 Leaky

3 Intentional

4 WYAIWYA

5 Curious curies

6 Lazy versioning

7 Fishy Cod & Fishy Cod on steroids

11
15
17
19
21



CONTENTS CONTENTS




Introduction

Hello, I am Ori Pekelman, and for the past year I have been
running a consulting company called Constellation Matrix;
you can find me on twitter/github/linked-in and such as
OriPekelman. I have building web stuff and therfor APIs
for the past twenty years or so. Over this last year I did
mostly Data (biggish) and API oriented projects and I come
before you to share some of the insights I gained.

This is in no way going to be a structured dissertation but

more of an anecdotal review of several patterns I find useful.

There are others.
REST! is in, and by itself a software design pattern.

Design patterns are common solutions to recurring problems
in software engineering.

1Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

When we talk about REST, we generally talk about the use
of accepted Web standards.?. As REST, as an architectural

style is born from the post-hoc analysis of the efficiencies of
the HT'TP model.

[ts implementation, its specific implementation is very much
dependent on the enviroment in which it is needed. Very
much like singleton or strategy chain which may or may not
make any sens depending on the programming language you
are using.

My favorite citation on design patterns is:

“Design patterns are bug reports against your program-
ming language” * — Peter Norvig

What will be proposed here are therfore bug reports againts

?Design Patterns: Elements of Reusable Object-Oriented Software by ErichGamma, RichardHelm, RalphJohnson,
and JohnVlissides (the GangOfFour), AddisonWesley Professional (November 10, 1994)

3http://11orvig.com/design—patterns/Design Patterns in Dynamic Languages First put online 17 March 1998; first
presented 5 May 1996



Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


http://norvig.com/design-patterns/

CONTENTS

CONTENTS

faulty implementations of REST, or at least recommenda-
tions of common solutions to common issues.

A design pattern has a scope, and REST' is an architecture,
or system level design pattern that specifically treats the
issue of orchestrating or interfacing two or more heterogenous
software systems.

As many design patterns it has applications and implications
beyond its immediate scope. Hypermedia REST promotes
leveraging the existing infrastructure of the Web in order to
make two differnet pieces of software talk to each other.

[t is about ubiquity. Simplicity. Reuse. Affordance. Scale,
and economy of scale.


Ori Pekelman


Ori Pekelman



Chapter 1

The double whammy

proxying your business classes

In previous talks about hypermedia APIs I insisted on the
fact that the API is a product': not a by-product of your
system. It should never leak internals. It must be designed.

One of the most important aspects of REST architecture is
that it proposes a standard way of managing caching. Be-
cause caching is extremly important, useful and hard, this is
not a detail. And this is why implementing REST correctly
with vigilance towards verb usage as well as return codes and
headers is extremly useful.

Thttp://www.pekelman.com/presentations/apidays/ Lipstick on a pig: How (not) to design a modern APT over
legacy systems

If your system is well behaved you can often simply put
a caching reverse HT'TP proxy in front of it and handle a
gazillion calls. You can even fail gracefully in a much easier
fashion.

Not everything will be magicky. You will need to spend time
and thought designing the “hard parts to cache”, but maybe
only those.

Because, usually your interal system will have shitty seman-
tics for caching. One of the reasons for this is that you were a
good developer. You optimized last. You sprinkled caching
into your system only on the parts that were being called
often, that were slow, you handle the safety and the manage-
ment of stale data closest to where it will have effects.


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


http://www.pekelman.com/presentations/apidays/

PROXYING YOUR BUSINESS CLASSES

CHAPTER 1. THE DOUBLE WHAMMY

This is one of the reasons your “main business code” should
not talk directly HT'TP. It should not be called directly from
your front API controllers. You want to wrap it with a thin
layer (a fagade, a proxy) that handles hiding your internals
and translating your semantics. This means you want to
have seralizer classes. They are a bridge between your mod-
els and their representations.

But remember : there is no requirement there will be a 1
on 1 mapping between your models, or business objects and
the resources you expose on the API. This is a job for this
bridge. And this is where you can put for example the cache
control mecanismes of your API.

A resource is an API level semantic construct. On the API
controller level you should only have API level semantics.
This second level of decoupling allows you to have two seper-
ate rythmes of development one for your system the other

for the API. And the API will want to live in the rythme of
the Web.

This will also make it easier to decompose your API into
smaller services; You might seriously want to consider having
multiple endpoints. Unix style doing one small thing well.
The smaller your APIs are the easier you can make them

8

rapidly evolve. Hypermedia makes it easy to link those back
again. Your root api should serve the directory of services.


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



Chapter 2

Leaky

Using a decorated third party API « Writing is hard because designing a stateless transaction-
nal system makes your head hurt.

« Writing is hard because when a read fails you get just
read again, when a write fails, you need to know it did,

Designing an efficient R/W API is hard. and you need to ensure idempotence, which is, well hard.

Writing is hard, well because it is.

Reading is hard for mainly three reasons:
« It requires the client to understand the model of the server.

What values are acceptable, which are obligatory, what is « You want to represent the most useful common usage pat-

the format of this string, is there an order in which I terns in the simplest way possible;

should call stuft? What can I do with a resource in this « You don’t really know how people will want to use your

specific state. data so you want some abstract, generique, fast and in-
« Writing is hard because it may require you to bust caches. credibly feature rich interface.

And caching is hard. « Being hit by a gazillion read requests with a lot of cache


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



USING A DECORATED THIRD PARTY API

CHAPTER 2. LEAKY

misses can be hard. Implementing a hierarchical, partial
caches is, well, hard.

A useful pattern on this is to couple your API with someone
elses. I use ElasticSearch. Basically this means that you
wrap ElasticSearch with a bit of your own sugar, letting it
handle anything that is generic, leaving you with ample time
and resources to treat only the specifics.

Basically this means my API behaves as a superset of Elas-
ticSearch. It knows how to do whatever ES knows, and it
has tricks of it’s own.

We call this leaky because this is a leaky abstraction. Instead
of putting a facade I am leaking techincal stuff about my
search engine. When ElasticSearch changes so will my API,
and it may very well do so implicitly. But the gain can be
enormous, anyway on any read-only use case. I don’t even
need to document most of my API.

This does not contredict the earlier idea that APIs should be
designed. Sometimes when you design a new car you think
about how many wheels it should have. Often you go with
the useful default of four.

10


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



Chapter 3

Intentional

But how the frigging hell do I do transactions with the REST
thing.

I'd be lying if I said this is the easiest part of de-
signing a good RESTful API. Because while applying
CRUDy/Collection/Itemy patterns is a breeze (just do
whatever Y. Katz and S. Klabnick tell you to see
http://jsonapi.org'), doing slow transactions that depend on
remote systems, that may have many, many states can be

difficult.

Because this really requires you to think about the domain,

Thttp://jsonapi.org/

11

)

the “big state machine” and what are the “real resources’
you are manipulating.

Let’s look at an example from the posterboys out at Stripe:
POST https://... /v1l/transfers/{id}/cancel

This is bad. Really bad. You have a transfer. You wish it
to be cancelled. But here we are breaking the whole model.
What happens if both the customer and the mechant can
cancel the transfer? and both submit the POST around the
same time? So much possibly breakage. We will need to
write 10 pages of documentation to explain what this verb
does, “cancel”.

Better:

1. Just have a “status” element in the document. Yup the


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



BUT HOW THE FRIGGING HELL DO I DO TRANSACTIONS WITH THE REST THING.

CHAPTER 3. INTENTIONAL

same transfer resource. And POST it back. Now we are
very clearly asking the server to change the state of the
resource from “active” to “cancelled”. We can very simply
use the “IF-NOT-MODIFIED” semantics. If we don'’t
get a response from the server (remember stuff breaks)
getting the same resource is all we need to do. This is
what REST is about.

2. You can also create a “cancellation” resource. So PUT
https://... /v1/transfers/{id}/cancellation this
is also beautiful, because we understand we can have
multiple cancellation requests from multiple parties at
the same time. Hey we can even decide here we need
a quorum. And its easy! something in the lines of
PUT https://... /vl /transfers/{id}/ cancella-
tion_ requests

Please remember. We are acting on a single resource, but
there are no requirements the resource we are modifiying
will not in its turn modify other resources. So we can create
a cancellation request. It will have its own state machine,
which will depend on the state of the parent resource (the
transfer).

By the way, Stripe already have the status element. So this

12

just comes from the “let’s not be ideaological about REST
department”. Which I totally adhere to. Except here its to-
tally wrong. This is not easier to implement, or understand.

Please remember, a resource is something that can be
adressed. Clearly a “cancellation” or a “cancellation request”
is a thing. We want to have a specific log of these.

This works much much better in a distributed, asynchronous
world. We still get n-phase transactions. We can poll for

the result, we can ue PRG (+Long Polling), we can use a
webhook.

Basically if you are implementing REST on everything BUT
transactions I believe you are missing out on the real fun (or
efficiency) of the whole idea.

A note on “DELETE". I have a big, big problem with the
concept of DELETE. Well because DELETE has no seman-
tics. There is a thing. I don’t want the thing to be. Why is
it not a thing?

1. the thing is not a real thing (Wrong address: Invalidate)
2. it was another thing (Duplicate address: Merge)
3. the thing is no longer a thing (Old address: Archive)


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



CHAPTER 3. INTENTIONAL BUT HOW THE FRIGGING HELL DO I DO TRANSACTIONS WITH THE REST THING.

In 99% of cases you do not want to use DELETE because
it will simply mean you are going to reuse the semantics of
DELETE for something else. Basically you should probably
“PUT” or “POST” depending on the semantics the intention
you have. Say why this resource should respond with 404.

13



BUT HOW THE FRIGGING HELL DO I DO TRANSACTIONS WITH THE REST THING. CHAPTER 3. INTENTIONAL

14



Chapter 4

WYAIWYA

Who you are is where you are, or content adressable

This one is tricky and easy to get wrong.

But think about how cool Git is. How cool bittorrent is.
How cool Bitcoin is. These are all content adressable systems.
The address of something is a hash of the content. We are
used to making nice “URL Plans” this is in part a legacy of
thinking about APIs as we thought about web sites. With
a hierarchy. But if you remember part of the hypermedia
thing is treating URLSs as opaque identifiers.

The problem here, is that URLS should represent stable en-
tities, and here, any change to the document will yield a new
URL. So ... this one should be used with parcimony. But
mixing this one with the intentional pattern creates a very

15

robust distributed thing. Because we can now even forgo
the whole “IF-NOT-MODIFIED” thing, every write can ref-
erence a clear reference state.

http://api.example.org/anything /shal-50ee373d208b4ad06
1bb415e0f311226ec2el3c4

It can also be a very good way to link two services. It lowers
the amount of information one system needs to have about
the other. You can use this just as a resolution service; These
URLS can redirect to the canonical URL. But. .. also, if you
did implement the “self” relationship ... well that would just
work. . .


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



WHO YOU ARE IS WHERE YOU ARE, OR CONTENT ADRESSABLE CHAPTER 4. WYAIWYA

16



Chapter 5

Curious curies

Hypermedia needs not be verbose.

FACT: Hyperlinks work very well with relative
paths. I would say they even work better.

You know, we asked you to put in “self” relation right? Now
oo ahead and use it. This can be your “Closure”, your scope
(it has some other nifty uses), your “base url”.

Often having verbose URLs in the responses is really not a
problem. But if it is in your very specific case... Here you go
Hypermedia can be terse. Call it “ID” style. Call it curies.

Both guys speaking before and after me propose to you a
reasonable default. A framework for using those (HAL from

17

Mike Kelly, JSON-API from Steve Klabnik and Yehouda
Katz). Choose either, or if you really feel a need for NIH roll
out your own (please don'’t).

If you are doing more then collection/item you can use some-
thing like:

"curies": [{ "name": "ea", "href":
"http://example.com/docs/rels/{rell}",
"templated": true }], with real true to god tem-
plates. Note that some of the propositions are extremly
feature rich (SOAP style rich) they can tell you how to
compose the forms, how to write, how to manage the state
machine.

Now there is a debate going on, maybe a bit of bikeshed-


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



HYPERMEDIA NEEDS NOT BE VERBOSE.

CHAPTER 5. CURIOUS CURIES

ding (“_links" againts “link”), and you might be afraid of
choosing the wrong one. Well if you listened to me on the
earlier points, and you proxied your internals and are using
a serializer class this should not be a huge deal (you'll also
see we can get clients to break less, later).

In Hypermedia REST we decided to forgo the mountain of
metadata SOAP gave us. Because the SOAP thing anyway
didn’t work. We get less magic with less breakage. But we
do add some back through hypermedia links. We annotate
and guide.

But really for the moment this is not about clients that au-
tomagically bind to your API. This is soapy. We accept
people write code. Its ok. Let’s just make their lives as easy
as possible. Let’s make the coupling light. I imagine you are
going to be delivering client libraries. So this is really ok.

I allow you to use URL fragments. Really, I do.
Go ahead. If they yell at you, tell them I said it
was ok.

Please use “HTML” style semantics for URL fragments. A
local reference to an ID. You are allowed to use other seman-
tics (look at what RDF people are doing with SKOS). But
keep it simple please.

18

This is a yet to be resolved issue; How do I reference other
stuff in the same response. We are using JSON and JSON is
really light on this. There are some emergeant stuff but the
dust has not settled.


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



Chapter 6

Lazy versioning

Version later, handle it later

Version numbers belong in the document not the URL.
You want to change from 1links to links Do you need
now to increment the version in the URL? that would break
all clients. Do you need to create a new content-type? Well
no;

)

Here is a nice pattern : Always version your resources; The
versioning should contain the version of the API (ver) as well
as the version of the resource (rev). Use semantic version-
ing for your API. Clients should be versioned to the minor
version of the server with minor of minor versions for them-

19

selves.

You should probably ask your clients to verify the version
number. A client should probably not try to interact too
much with a server that sends documents with a different
major version (hey but it could try!). The client should prob-
ably log somewhere a warning on minor version mismatch.
This has a lot of very useful side effects. It does not make all
of your client code magically forward compatible but you can
reduce a lot of breakage and we have very clear semantics
around this.

This mostly means clients of all versions can interact with
the same endpoint. If these are true hypermedia clients they
will mostly just follow links.. and even if we upgraded our


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman


Ori Pekelman



VERSION LATER, HANDLE IT LATER

CHAPTER 6. LAZY VERSIONING

server during a transaction we might very well be able
to treat it.

You might very well also want to combine this one with
WYAIWYA! and reference the content of the previous revi-
sion we have good IANA relations for this one (either “prev”
or “supercedes” depending on your use case)

20


Ori Pekelman


Ori Pekelman



Chapter 7

Fishy Cod & Fishy Cod on steroids

Code is data, it is a document you can send.

3.4.3 Client-Stateless-Server (CSS)

The client-stateless-server style derives from client-
server with the additional constraint that no session
state is allowed on the server component. Each request
from client to server must contain all of the information
necessary to understand the request, and cannot take
advantage of any stored context on the server. Session
state is kept entirely on the client.'

1Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

21

Well one of the most often misunderstood notions of HA-
TEOAS is that a stateless server means maintaining a lot of
state on the client. Which the client would usually not really
know how to do without resorting to a lot of code. Because
the “domain model” of the server is not exposed to the client.
Which kind of breaks the whole promise. It means we are
creaing very strong coupling. There is a magicky solution to
this;

5.1.7 Code-On-Demand

The final addition to our constraint set for REST comes

from the code-on-demand style of Section 3.5.3 (Fig-

ure 5-8). REST allows client functionality to be ex-
tended by downloading and executing code in the form


Ori Pekelman


Ori Pekelman


Ori Pekelman



HTML IS A GOOD SERIALIZATION FOR HUMANS, THROW IN A BIT OF JAVAGHRHIIER(D RISH Y QUI0:QTFSAYRSEDFON CONROLBS

of applets or scripts. This simplifies clients by reducing
the number of features required to be pre-implemented.
Allowing features to be downloaded after deployment
improves system extensibility. However, it also reduces
visibility, and thus is only an optional constraint within
REST.

The notion of an optional constraint may seem like an
oxymoron. However, it does have a purpose in the ar-
chitectural design of a system that encompasses multi-
ple organizational boundaries. It means that the archi-
tecture only gains the benefit (and suffers the disadvan-
tages) of the optional constraints when they are known
to be in effect for some realm of the overall system. For
example, if all of the client software within an organi-
zation is known to support Java applets [45], then ser-
vices within that organization can be constructed such
that they gain the benefit of enhanced functionality via
downloadable Java classes. At the same time, however,
the organization’s firewall may prevent the transfer of
Java applets from external sources, and thus to the rest
of the Web it will appear as if those clients do not sup-
port code-on-demand. An optional constraint allows us

22

to design an architecture that supports the desired be-
havior in the general case, but with the understanding
that it may be disabled within some contexts.’

HTML is a good serialization for Humans, throw in a bit of
Javascript COD and you got yourself a console.

Even better your web site / web app can simply be the
HTML serialization of your api 4+ some nice ember/angular
bindings that calls itself getting the data with a second seri-
alization.

SO http://api.example.com is basically
http: /www.example.com (why the hell do we need to
have something else?)  One responds to Content-Type
text/html well.. Just a bit of content negotiation and the
website/application /api are the same!

2Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.


Ori Pekelman


Ori Pekelman


Ori Pekelman



	Introduction
	The double whammy
	Leaky
	Intentional
	WYAIWYA
	Curious curies
	Lazy versioning
	Fishy Cod & Fishy Cod on steroids

